
ds_store Documentation
Release 1.1.2

Alastair Houghton

Sep 20, 2017

Contents

1 What is this? 3

2 Usage 5

3 Code Documentation 7
3.1 ds_store package . 7

4 Indices and tables 9

Python Module Index 11

i

ii

ds_store Documentation, Release 1.1.2

This document refers to version 1.1.2

Contents 1

ds_store Documentation, Release 1.1.2

2 Contents

CHAPTER 1

What is this?

Historically the Mac OS Finder stored additional per-file information in a special Finder Info field in the HFS/HFS+
filesystem. It also held other information in a single file known as the Desktop Database.

Filesystems other than HFS obviously do not have the Finder Info structure, and until recently support for extended
attributes was rare. As a result, the Mac OS X Finder was written to store the necessary information in hidden files
named .DS_Store, which it places into every directory where it needs to store information.

The format of these files is, sadly, not documented by Apple. This is a pain for software developers, who often
distribute their software in Apple Disk Image (or .dmg) files. Typically developers set an attractive background
on their disk images, increase the icon size and font size and often include a link to the /Applications folder.
Unfortunately, the only supported way to set many of these things is via Finder itself. You might think that you could
drive Finder with AppleScript for this purpose, but this turns out to be unreliable (Finder may not save the changes to
the .DS_Store file immediately), and worse still Apple has made changes to the information Finder uses between
versions of Mac OS X, such that setting some of these things on newer versions of the OS X Finder will not set them
for users of older versions.

This module allows programmatic access to and construction of .DS_Store files directly from Python, with no Mac
OS X specific code involved.

3

ds_store Documentation, Release 1.1.2

4 Chapter 1. What is this?

CHAPTER 2

Usage

Typical usage looks like this:

from ds_store import DSStore

with DSStore.open('/Users/alastair/.DS_Store', 'r+') as d:
Position the icon for "foo.txt" at (128, 128)
d['foo.txt']['Iloc'] = (128, 128)

Display the plists for this folder
print d['.']['bwsp']
print d['.']['icvp']

Importantly, deleting the DSStore object is not sufficient to flush changes to disk. If you use the with syntax
above, changes you make to the .DS_Store file will automatically be persisted. Otherwise, you will need to call
flush() or close() to flush your changes to disk.

Note that Finder generally places information about folders in the containing folder. The exception is that if it cannot
write to the containing folder, or the folder in question is at the root of a volume, Finder will put the information in a
record for ”.” inside the folder to which it applies.

ds_store currently knows how to decode the following items

Table 2.1: Supported item codes

Code Type Python representation
Iloc blob (x, y) tuple
bwsp blob Property list (dict)
lsvp blob Property list (dict)
lsvP blob Property list (dict)
icvp blob Property list (dict)

Items not in the list above will be returned as (type, value) tuples. Supported type values are

5

ds_store Documentation, Release 1.1.2

Table 2.2: Suported type codes

Type Python representation
bool Boolean (True or False)
long Integer
shor Integer
ustr Unicode string
type 4-character byte string
comp Integer
dutc Integer
blob Byte string

If ds_store happens across any other type code, it will raise ValueError. This is unavoidable because the .
DS_Store file format does not include length information, so if we find a type code we do not support, we cannot
read the file.

6 Chapter 2. Usage

http://python.readthedocs.io/en/latest/library/exceptions.html#ValueError

CHAPTER 3

Code Documentation

ds_store package

class ds_store.DSStore(store)
Bases: object

Python interface to a .DS_Store file. Works by manipulating the file on the disk—so this code will work with
.DS_Store files for very large directories.

A DSStore object can be used as if it was a mapping, e.g.:

d['foobar.dat']['Iloc']

will fetch the “Iloc” record for “foobar.dat”, or raise KeyError if there is no such record. If used in this
manner, the DSStore object will return (type, value) tuples, unless the type is “blob” and the module knows
how to decode it.

Currently, we know how to decode “Iloc”, “bwsp”, “lsvp”, “lsvP” and “icvp” blobs. “Iloc” decodes to an (x, y)
tuple, while the others are all decoded using biplist.

Assignment also works, e.g.:

d['foobar.dat']['note'] = ('ustr', u'Hello World!')

as does deletion with del:

del d['foobar.dat']['note']

This is usually going to be the most convenient interface, though occasionally (for instance when creating a new
.DS_Store file) you may wish to drop down to using DSStoreEntry objects directly.

class Partial(store, filename)
Bases: object

This is used to implement indexing.

7

http://python.readthedocs.io/en/latest/library/functions.html#object
http://python.readthedocs.io/en/latest/library/exceptions.html#KeyError
http://python.readthedocs.io/en/latest/library/functions.html#object

ds_store Documentation, Release 1.1.2

DSStore.close()
Flush dirty data and close the underlying file.

DSStore.delete(filename, code)
Delete an item, identified by filename and code from the B-Tree.

DSStore.find(filename, code=None)
Returns a generator that will iterate over matching entries in the B-Tree.

DSStore.flush()
Flush any dirty data back to the file.

DSStore.insert(entry)
Insert entry (which should be a DSStoreEntry) into the B-Tree.

classmethod DSStore.open(file_or_name, mode=u’r+’, initial_entries=None)
Open a .DS_Store file; pass either a Python file object, or a filename in the file_or_name argument
and a file access mode in the mode argument. If you are creating a new file using the “w” or “w+” modes,
you may also specify a list of entries with which to initialise the file.

class ds_store.DSStoreEntry(filename, code, typecode, value=None)
Bases: object

Holds the data from an entry in a .DS_Store file. Note that this is not meant to represent the entry itself—i.e.
if you change the type or value, your changes will not be reflected in the underlying file.

If you want to make a change, you should either use the DSStore object’s DSStore.insert() method
(which will replace a key if it already exists), or the mapping access mode for DSStore (often simpler anyway).

byte_length()
Compute the length of this entry, in bytes

classmethod read(block)
Read a .DS_Store entry from the containing Block

write(block, insert=False)
Write this entry to the specified Block

8 Chapter 3. Code Documentation

http://python.readthedocs.io/en/latest/library/functions.html#object

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

9

ds_store Documentation, Release 1.1.2

10 Chapter 4. Indices and tables

Python Module Index

d
ds_store, 7

11

ds_store Documentation, Release 1.1.2

12 Python Module Index

Index

B
byte_length() (ds_store.DSStoreEntry method), 8

C
close() (ds_store.DSStore method), 7

D
delete() (ds_store.DSStore method), 8
ds_store (module), 7
DSStore (class in ds_store), 7
DSStore.Partial (class in ds_store), 7
DSStoreEntry (class in ds_store), 8

F
find() (ds_store.DSStore method), 8
flush() (ds_store.DSStore method), 8

I
insert() (ds_store.DSStore method), 8

O
open() (ds_store.DSStore class method), 8

R
read() (ds_store.DSStoreEntry class method), 8

W
write() (ds_store.DSStoreEntry method), 8

13

	What is this?
	Usage
	Code Documentation
	ds_store package

	Indices and tables
	Python Module Index

