

ds_store - Manipulate Finder .DS_Store files from Python

This document refers to version 1.1.2

What is this?

Historically the Mac OS Finder stored additional per-file information in a
special Finder Info field in the HFS/HFS+ filesystem. It also held other
information in a single file known as the Desktop Database.

Filesystems other than HFS obviously do not have the Finder Info structure,
and until recently support for extended attributes was rare. As a result, the
Mac OS X Finder was written to store the necessary information in hidden files
named .DS_Store, which it places into every directory where it needs to
store information.

The format of these files is, sadly, not documented by Apple. This is a pain
for software developers, who often distribute their software in Apple Disk
Image (or .dmg) files. Typically developers set an attractive background
on their disk images, increase the icon size and font size and often include a
link to the /Applications folder. Unfortunately, the only supported way
to set many of these things is via Finder itself. You might think that you
could drive Finder with AppleScript for this purpose, but this turns out to be
unreliable (Finder may not save the changes to the .DS_Store file
immediately), and worse still Apple has made changes to the information Finder
uses between versions of Mac OS X, such that setting some of these things on
newer versions of the OS X Finder will not set them for users of older
versions.

This module allows programmatic access to and construction of .DS_Store
files directly from Python, with no Mac OS X specific code involved.

Usage

Typical usage looks like this:

from ds_store import DSStore

with DSStore.open('/Users/alastair/.DS_Store', 'r+') as d:
 # Position the icon for "foo.txt" at (128, 128)
 d['foo.txt']['Iloc'] = (128, 128)

 # Display the plists for this folder
 print d['.']['bwsp']
 print d['.']['icvp']

Importantly, deleting the DSStore object is not
sufficient to flush changes to disk. If you use the with syntax above,
changes you make to the .DS_Store file will automatically be persisted.
Otherwise, you will need to call flush()
or close() to flush your changes to disk.

Note that Finder generally places information about folders in the
containing folder. The exception is that if it cannot write to the
containing folder, or the folder in question is at the root of a volume,
Finder will put the information in a record for ”.” inside the folder to which
it applies.

ds_store currently knows how to decode the following items

Supported item codes

	Code
	Type
	Python representation

	Iloc
	blob
	(x, y) tuple

	bwsp
	blob
	Property list (dict)

	lsvp
	blob
	Property list (dict)

	lsvP
	blob
	Property list (dict)

	icvp
	blob
	Property list (dict)

Items not in the list above will be returned as (type, value) tuples.
Supported type values are

Suported type codes

	Type
	Python representation

	bool
	Boolean (True or False)

	long
	Integer

	shor
	Integer

	ustr
	Unicode string

	type
	4-character byte string

	comp
	Integer

	dutc
	Integer

	blob
	Byte string

If ds_store happens across any other type code, it will raise
ValueError [http://python.readthedocs.io/en/latest/library/exceptions.html#ValueError]. This is unavoidable because the .DS_Store file
format does not include length information, so if we find a type code we do
not support, we cannot read the file.

Code Documentation

	ds_store package

Indices and tables

	Index

	Module Index

	Search Page

ds_store package

	
class ds_store.DSStore(store)

	Bases: object [http://python.readthedocs.io/en/latest/library/functions.html#object]

Python interface to a .DS_Store file. Works by manipulating the file
on the disk—so this code will work with .DS_Store files for very
large directories.

A DSStore object can be used as if it was a mapping, e.g.:

d['foobar.dat']['Iloc']

will fetch the “Iloc” record for “foobar.dat”, or raise KeyError [http://python.readthedocs.io/en/latest/library/exceptions.html#KeyError] if
there is no such record. If used in this manner, the DSStore object
will return (type, value) tuples, unless the type is “blob” and the module
knows how to decode it.

Currently, we know how to decode “Iloc”, “bwsp”, “lsvp”, “lsvP” and “icvp”
blobs. “Iloc” decodes to an (x, y) tuple, while the others are all decoded
using biplist.

Assignment also works, e.g.:

d['foobar.dat']['note'] = ('ustr', u'Hello World!')

as does deletion with del:

del d['foobar.dat']['note']

This is usually going to be the most convenient interface, though
occasionally (for instance when creating a new .DS_Store file) you
may wish to drop down to using DSStoreEntry objects directly.

	
class Partial(store, filename)

	Bases: object [http://python.readthedocs.io/en/latest/library/functions.html#object]

This is used to implement indexing.

	
DSStore.close()

	Flush dirty data and close the underlying file.

	
DSStore.delete(filename, code)

	Delete an item, identified by filename and code
from the B-Tree.

	
DSStore.find(filename, code=None)

	Returns a generator that will iterate over matching entries in
the B-Tree.

	
DSStore.flush()

	Flush any dirty data back to the file.

	
DSStore.insert(entry)

	Insert entry (which should be a DSStoreEntry)
into the B-Tree.

	
classmethod DSStore.open(file_or_name, mode=u'r+', initial_entries=None)

	Open a .DS_Store file; pass either a Python file object, or a
filename in the file_or_name argument and a file access mode in
the mode argument. If you are creating a new file using the “w”
or “w+” modes, you may also specify a list of entries with which
to initialise the file.

	
class ds_store.DSStoreEntry(filename, code, typecode, value=None)

	Bases: object [http://python.readthedocs.io/en/latest/library/functions.html#object]

Holds the data from an entry in a .DS_Store file. Note that this is
not meant to represent the entry itself—i.e. if you change the type
or value, your changes will not be reflected in the underlying file.

If you want to make a change, you should either use the DSStore
object’s DSStore.insert() method (which will replace a key if it
already exists), or the mapping access mode for DSStore (often
simpler anyway).

	
byte_length()

	Compute the length of this entry, in bytes

	
classmethod read(block)

	Read a .DS_Store entry from the containing Block

	
write(block, insert=False)

	Write this entry to the specified Block

 Python Module Index

 d

 		 	

 		
 d	

 	
 	
 ds_store	

Index

 B
 | C
 | D
 | F
 | I
 | O
 | R
 | W

B

 	
 	byte_length() (ds_store.DSStoreEntry method)

C

 	
 	close() (ds_store.DSStore method)

D

 	
 	delete() (ds_store.DSStore method)

 	ds_store (module)

 	
 	DSStore (class in ds_store)

 	DSStore.Partial (class in ds_store)

 	DSStoreEntry (class in ds_store)

F

 	
 	find() (ds_store.DSStore method)

 	
 	flush() (ds_store.DSStore method)

I

 	
 	insert() (ds_store.DSStore method)

O

 	
 	open() (ds_store.DSStore class method)

R

 	
 	read() (ds_store.DSStoreEntry class method)

W

 	
 	write() (ds_store.DSStoreEntry method)

 nav.xhtml

 Table of Contents

 		ds_store - Manipulate Finder .DS_Store files from Python

 		ds_store package

_static/minus.png

_static/comment-close.png

_static/down.png

_static/plus.png

_static/down-pressed.png

_static/comment.png

_static/file.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/comment-bright.png

_static/up.png

